
N4SA CONTRACTOR REPORT 177340

I_.ql

STUDY FOR PREDICTION OF ROTOR/
WAKE/FUSELAGE INTERFERENCE

PART I: TECHNICAL REPORT

(ZASA-CR-177340-VoI-I) S2UD! EOR PREDICTION

OF ROTOa/WAKE/¥USEL&GE _NTZ_¥RR_NCE, P£_T
Final Re_ort, I dun. 198u - I Nov. IS83

(Analytical _etbods, Inc., F_dnond, Wash.)

92 p HC A05/_F A01 CSCL 01& G3/u|

D. R. Clark

B. Maskew

N85-223_6

,Q

"qi

i

CONTRACT NAS2-10620
March 1985



NASA CONTRACTOR REPORT 177340

STUDY FOR PREDICTION OF ROTOR/WAKE/

FUSELAGE INTERFERENCE

PART I: TECHNICAL REPORT

D. R. Clark

B. Maskew

Analytical Hethods, Inc.

2047 - 152nd Avenue, N.E.

Redmond, WA 98052

Prepared for
Ames Research Center

under Contract NAS2-10620

National Aeronautics and

Space Administration

Ames R_rch Center
Moffett Field, Cahforn_a 94035



ABSTRACT

A method has been developed which allow_ the fully coupled

calculation of fuselage and rotor airloads for typical helicopter

configurations in forward flight. To do this, &n iterative

solution is carried out based on a conventional panel representa-
tion of the fuselage and a blade element represent&tion of the

rotor where fuselage and rotor singularity strengths are
determined simultaneously at each step and the rotor wake is

allowed to relax (deform) in response to changes in rotor wake

loading and fuselage presence. On completion of the iteration,
rotor loading and inflow, fuselage singularity strength (and,
hence, pressure and velocity distributions) and rotor wake are
all consistent.

The results of a fully coupled calculation of the flow

around representativ_ helicopter configurations are presented.
The effect of fuselage components on the rotor flow field and the

overall wake structure is detailed and the aerodynamic

interference between the different parts of the aircraft is

discussed. In particular, the flow field developed by the rotor
head is followed and the effect of a rotor head cap and pylon

modifications in redirecting the rotor head flow are illustr_ted.
Good correlation between measured and calculated fuselage

airloads in low-speed flight is achieved and correspondence with
observed flow field behavior is demonstrated.

•
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LIST OF SYMBOLS

Note: In this report two different analyses which have

(separately) well defined sets of conventional symbols are

brought together. The conventions have been retained and, as a

result, some symbols have double definiticn. Their meaning,
however, remains clear when they are considered in the context of

their applications. The symbols involved are _ and u. In the

panel model convention these represent the doublet and source
singularity strengths, while in the rotor model convention, they

represent rotor solidity and advance ratio. The uses are suffi-
ciently separate that confusion should not occur.
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Rotor panel model differential pressure coefficient
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Rotor thrust coefficient =

Blade flapping hinge offset

Rotor lift in wind axis system
Blade model segment load

L b
Panel model time-averaged load = _ ._r. N--C

Mach number

Number of azimuthal increments into which disc is broken

for panel model
Rotor propulsive force in wind axis system
Radial location on blade

Blade tip radius
Blade segment length
Rotor thrust

Velocity components in blade section axis system
Velocity components in wind (global) axis system

Rotor local resultant velocity

Global coordinate system

f

8
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Roto_ control axis orientation

Body pitch attitude
Blade flapping angle
Blade flapping rate (_81_t)

Blade local yaw angle
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1.0 INTRODUCTION

AS helicopter designers work towards the development of a

vehicle which can compete with fixed-wing aircraft, if not in

terms of speed, at least in terms of passenger acceptance in the
areas of ride quality, vibration, and noise, they are being

forced more and more to acknowledge the complex interaction that

takes place between the rotor and the airframe. Body/rotor
interference manifests itself throughout the operational range of
the helicopter; it is as significant at low speed in the form of

rotor induced fuselage downloads as it is at high speed where the
most important effects are the irregularities in rotor loads

induced by the passage of the blades through the fuselage flow
field. Added to these effects is the controlling role of the
main rotor wake in the handling qualities, passing as it does
over and around the horizontal and vertical tail surfaces and the

tail rotor as speed and flight conditions change. The ter_
"interactional aerodynamics", coined by Sheriden and Smith, _

aptl_ describes the very involved process which controls helicop-

ter loads, dynamics, handling qualities and performance.

_hrou%hout the first three decades of the helicopters

existence as a practical machine, the profound effect that the
pre_ence of the fuselage can have on rotor behavior was hardly
acknowledged. This was largely due to the fact that there was

not a strong, driving requirement to understand the interaction
and rotors were designed, analysed and tested in isolation. The

fact that when installed they behaved differently, trimmed at

different cyclic pitch settings and had considerably different
aeroelastic response and dynamic characteristics was correctly

attrlbuted, in most cases, to the presence of the fuselage. How-

ever, no serious attempt was made to understand the phenomenon
and since the modest performance and dynamics goals of the period

were being met, there was no incentive to refine the design
methods.

The situation changed dramatically in the early seventies as

a result of the competition to provide the U.S. Army with new
utility transport and attack h_licopters. A prime requirement in

both programs was that the designs must all be ai_transportable

within certain very clearly defined limits and this resulted in
designs in which the rotor was placed, initially, very clo_e to

the fuselage in an attempt to reduce the overall height of the

vehicle. All of the vehicles tested in this configu=ation ex-
hibiued undesirable dynamic characteristics where were attributed

to fuselage induced rotor inflow variations.

The phenomenon was first explored analytically by Landgzebe

et al.,2 in a paper which examined the mathematical tools avail-

able for the design of the new generation of rotor craft. In
this work the flow field induced by the fuselage in the region of

the rotor was calculated by an early potential flow configuration

modelling program. For this early study there was no direct
coupling of rotor and fuselage e£fects, and the velocities

1



calculated in the rotor plane by the fuselage analysl e
simply fed as inflow into the rotor analysis. Because .e
size of the individual programs and the limitations of the com-

puting facilities available at the time, no coupling of the rotor

on fuselage effects was attempted beyond very simple sourc_ plane
or vortex tube rotor models. Despite these limitations the

analysis was used with some success to explore alternative rotor

locations. The study showed how, when operating close to the
fuselage, the rotor is exposed to an azimuthally varying inflow,
predominantly up over the nose and down aft of the shaft but

containing higher harmonics, which significantly degrade the
aircraft vibration environment. Also, it was realized that the

upwash over the front fuselage was severe enough, causing very

large increases in angle of attack as the blade passed through
the forward portion, to precipitate stall as far out as mid-span.

Inclusion of the fuselage induced flow field in the dynamic
analysis dramatically improved correlation with measured data.

Fuselage/rotor interference has been explored from both

experimental and analytical sides. Noteworthy from the experi-
mental point of view has been the work of the group at NASA
Langley. Following the early work of Wilson and Mineck,3 direr-

ted mainly at handling qualities and low speed fuselage loads,

the work of Freeman with Mineck,4 and later with Wilson5 explored
systematically the influence of body shape and relative

rotor/body position on fuselage and rotor airloads. They showed
how with increased fuselage width and reduced body/rotor spacing

the performance of both systems is degraded. The work of

:_heriden and Smith,1 concentrating on a particular configuration

also explored the effects of body/rotor placement. More re-
cently, Betzina and Shinoda6 working with a scale model of a wind

tunnel test module (from the NASA Ames 40 x 80 wind tunnel) have

examined coupled rotor/body integrated performance_ Formerly a

rarity, test of rotor/fuselage combinations are now standard
rocedure as designers try to define more closely the differences
etween analysis and actuality and between model and full-scale

test results. Reference 6 presents a fairly typical outline of

the gaps that still exist in the understanding of the coupled
flow field.

In parallel with the expansion of the experimental data
base, work has continued on the development of analytical tools

to explore rotor/body phenomena. Several different approaches to
modelling the flow field have been employed ranging from involved

combinations of vortex filament wake models and full fuselage

panel models to simple Stacked vortex ring arrays. In all cases,

however, inclusion of the effect of the presence of the fuselage
in the description of the rotor inflow improves the prediction of
unsteady effects.

At a rotor wake workshop held by the U.S. Army Research

Office (AROD), Smith8 presented a method where the fuselage was
represented by a single source element in a uniform flow and the

rotor by a series of constant strength vortex rings, displaced



L _ •

upwards as they passed through the sphere of influence of the

body source. Despite the relative crudity of the model, the
predicted rotor loading shape was good. The same basic model was

used by Young. 9 Wi_h a more refined fuselage model and con-
sidering both vertical and horizontal displacement of vortex
rings, he was able to snow some improvements in correlation with

test data. Incorporation of cyclically varying circulation
around the rings further enhanced the correlation.

A more detailed analysis which more accurately represents
the fuselage with a complex panel model and the rotor with a wake
filament model was used by Landgrebe et al.2 The method was used
in the work discussed in References 7 and i0. Here, the flow

around the panel model is first calculated and the velocity field
in the plane of the rotor determined. This is used as input to a

rotor performance calculation which can include as much detail

as desired, up to and including a full filament wake distortion

calculation. It is not clear from the published work whether any

higher-order coupling is involved. Certainly, in the schematics

presented in Reference 7, the arrows connecting fuselage and
rotor aerodynamics modules only go one way, from fuselage to

rotor, implying no higher-order coupling than a simple rotor
onset flow modification. However, comparison between results
predicted using the method and test data show good agreement.

A similar approach is taken by Huber and Polz. II Using a
detailed panel model they calculate the flow in the plane of the

rotor for input to a rotor analysis. Again, no higher-order

coupling is used. This is reflected in the fuselage induced
upwash profiles presented in Reference ii, which are symmetric

about the center plane. If coupling had been present, the upwash
contours would have been asymmetric, reflecting the differences

in loading between the advancing and retreating inboard blade

sections. _spite this, they show very graphically the large
impact of the fuselage on the rotor loads, especially in the
region of the forth and fifth harmonic.

Huber and Polzll also present results from earlier studies

where, for the first time, attempts have been made to calculate
the effect of regions of separated flow on downstream com-

ponents. The earlier work 12 presents the method in detail.

Following the by now conventional technique (See References 13

and 14), the authors, using a panel method and streamline pro-
cedures, calculate the extent oF. regions of separated flow; then,
with a novel volumetric vorticity singularity model, are able to

determine the velocity field inside the separation zone

downstream. They do not, however, present any calculation on the
effect of these flows and, in fact, their sample cases are un-

naturally truncated. This is done since the type of singularity

model used in the analysis cannot handle a direct vortex/surface
intersection.



Another theoretical approach to the body/rotor problem is

that taken by Freeman.15 Again, using a basic panel model for
the fuselage and a vortex tube model of the rotor wake, following

Heyson,16 he is able to show quite impressive correlation between

the results of his analysis and body/rotor test data. However,
there was no coupling present between rotor and fuselage flows,

the rotor model being simply used to perturb the fuselage model

onset flow, and no fuselage induced wake distortion was intro-
duced into the rotor calculation.

p!

None of the rotor/fuselage analyses examined couples fully
the flow fields of the two components to the extent that terms or
higher than first order; that is, fuselage on rotor2,7,9 or rotor

on f_selagel5 are included, and none have been able to calculate
the ue_ormation o_ the _otor wake in the presence of the fuselage

or handle the direct vortex wake/fuselage cutting situations.

The reasons for this were outlined by the present author at the
U.S. Army Conference on Wake Modelling in 1979,17 and in detail

in Reference 18. The lack of an adequate coupling analysis

results partly _rom the limited capacity of the computing
machines then in use (the fuselage panel codes and vortex wake

codes on their own consuming most of the machine capacity--

precluding direculy coupled calculation), but mostly from the
inability of the potentlal flow models to handle the close ap-
proach of strong singularities in the external flow and direct
vortex/surface encounters.

The goal of the present study was a full description of the

highly interactive helicopter flow field including powerplant
exhaust, horizontal and vertical stabilisers, tail or other

auxiliary rotors and separated wakes from upstream components

such as bluff rotor heads. This was made possible by the coup-
ling of a rotor module to an advanced potential flow modelling

code. The program, designated VSAERO (Vortex Separation

AEROdynamics),19,20 uses combinations of doublet and source
singularities, t)gethec with changes in the way in which the

boundary" conditions are applied, to solve for uhe local, scalar

doublet strength. This is differentiated to define the local
velocity field. Techniques have been developed to handle not

only close vortex approach but also direct wake cutting. The

rotor wake (wakes if more than one rotor is present) is represen-
ted by time-averaged vortex sheaths which are allowed to deform

in the presence of the £uselage flow field. The rotor/fuselage

coupling is made throu@h a blade element model for the rotor
supplied with inflows zrom the fuselage/wake calculation and
feeding back circulation strengths to the wake.

The model has been used with some success to look at basic

body/rotor performance over an advance ratio range from 0.05 to

0.3. Correlation of fuselage loads inside the wake interference
, zone is generally good. The test data used for the correl_ticn
i was that of Freeman and Mineck.4 The same basic configuration
J

was used as a starting point for a study of the effects of adding
_i configuration components and a full buildup was carried out. The

4



effects of adding horizontal and vertical stabiliser, tail rotor,

engine nacelles and exhaust plumes, a rotor head representation,
and finally, a rotor head fairing were explored. The role of the
rotor head "beanie" and pylon modifications in deflecting the

center portion of the rotor wake downwards was demonstrated.
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2.0 ANALYSIS

2.1 Backuround to the Analysis

Earlier approaches to the analysis of body on rotor or rotor

on body interference has generally been limited to first-order
effects. That is, the presence of the fuselage has been included

in the rotor calculation by means of some perturbation of the

rotor inflow field or the presence of the rotor is considered in
a calculation of the fuselage aerodynamics through the inclusion
of an actuator disc or vortex tube model which alters the fuse-

lage onset flow. No attempt is made, however, to introduce any
coupling by, say, including the presence of the fuselage in the
calculation of the rotor downwash field passing over the fuse-

lage. One reason for this is the complexity of the models
required to adequately represent (alone) the rotor and fuselage
flow fields.

Figure 1 represents a fairly typical vortex filament model

of a helicopter rotor wake in forward flight. This illustration,

taken from the work of Landgrebe, 21 presents the rotor wake as a
series of straight line vortex elements. Every one of these

vortex segements induces a velocity on every other and on the

rotor blade; determination of the equilibrium position of the
wake, and, hence, the rotor inflow, loading and performance
involves the solution of the wake circulation matrix at each

instant in time, with the wake being progressively generated
until some equilibrium shape is reached. This is a procedure
which demands most of the resources of even today's advanced

computing machines. Similarly, in the calculation of the fuse-

lage aerodynamics0 th_ airframe is discretized and represented as
a collection of flat 9a_els, Figure 2, each modelled by singu-

larities whose scr_:7_:5_ ar_ determined by position of the panel
on the body and the o_ fiow. The strengths of the singulari-

ties, the unknowns in _:::e_olution, are corventionally determined

by the inverzion of _ :_rix equation involving the influence of
each panel on every _the, panel and the boundary conditions. In

the more advanced a;;al Jes of this type, Ref. 20 is typical,

viscous and se[azat_:_ _ _:low regions can be modelled. Again, as
with the vort6:_ _ila'_:,:c models of the rotor wake, an analysis of

this type _ema_:_s _= ¢f the capability of today's computing

machines, _i_:_ing. _hese two already involved analytic tools
immediately _:eref,:_ _, pre_:ents a problem of computing machine
capacity. F_ure _ pictures an influence block diagram where the

block_ o_ the di_gnal _epre_ent the influence of the fuselage on
the f_se_age _n,l the rotor and its wake on themselves_ _he off-

diagonal _loc_ are the ,:oupling terms, rotor on fuselage and
f:_sela_e 6n _:oto_, which must be included for a second-or

higher-o_ _er _olut_on to be achieved and, as was noted above,

sl_ce the solu_ ion :>f each of the major blocks on their own, that

is_ fus:_lag_ on fuselag,_ or rotor/wake on rotor/wake, absorb most

o:[ the machine capu_ity, some way must be found to simplify the
mo_iel i_ e full solution is to be achieved. This is made even

mo_e complex by the fact that although the body/body block is



Figure I. Typical Output from Vortex Filament Wake Model.

i

Figure 2. Typical Panel Representation for Helicopter
Analytical Model.
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steady, all the other blocks are time dependent when considered

in the body axis system.

In the present analysis this is overcome by working with a

time averaged vortex sheath rather than the time varying vortex
filament model that is more conventionally used. The vortex
sheath is attached around the edge of the rotor disc and rep-

resents the envelope within which the rotor wake will be trans-
ported downstream. This type of wake model may be distorted
(relaxed) in the same way as the filament models and will provide
all the inflow distributional effects in the rotor disc plane in
that a rotor blade moving through the inflow field will experi-
ence the same low harmonics that would be felt in a filament

model. This is felt to be adequate for performance prediction.
The higher harmonics of inflow needed for rotor loads work may be

simulated, but this is beyond the scope of the present study.

Another technical problem which must be overcome before

coupled fuselage and rotor wake calculations could be achieved

arises from the nature of the fuselage model itself. In the
conventional panel model representation, the flow solution is

strictly only correct at the panel control point. Away from this

location substantial errors can exist and Figure 4, taken from
Reference 18, shows how these can very in a typical case. For

the body/rotor flow field calculation, streamlines close to the

body have to be defined if fuselage induced rotor wake deforma-

tion is to be calculated and some way must be found to avoid the
errors pictured in Figure 4 if this is to be achieved.

A solution to this problem is provided by a new method
developed by Maskew and described in detail in Reference 20. In

this approach the surface is modelled using doublet singulari-
ties. The use of doublets together with an appropriate choice of
boundary conditions and an interpolation technique which deter-

mines local doublet gradients, and through them surface and off-
body velocities, gives a continuous definintion of the local flow
field. With the earlier source singularities models this would

have been impossible, especially when the strong vortex elements
from the leading edge of the rotor passed close to the fuselage

panels. Figure 5(a), again taken from Reference 20, illustrates

the ability of the doublet code to handle this type of close
passage problem. Here, the streamlines around a stzo,g vortex

positioned above an airfoil leading ed%e are shown. As can be

seen in Figure 5(b), the calculated pressure distribution is
smooth and the derived off-body streamlines are well defined.

Together the vortex sheath model of the rotor wake and the

doublet analysis provide the tools with which to represent the

flow around helicopter fuselage/rotor combinations. What is

needed now is some means of coupling the wake and fuselage

models. This is provided by a rotor blade element model embedded
within the potential flow solution. The solution proceeds iter-

atively and is represented by the block diagrams given in Figure
6.

9
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The approach, first outlined in Reference 17, is built

around a panel model of the fuselage and a vortex sheath model of

the rotor wake attached around the edge of a panel model of the

rotor disc. The whole assembly is driven by a blade element

model of the rotor. Having panelled the fuselage and the rotor

disc and set up the rotor wake in some initial position, the
rotor blade element calculation is used to define the variation

of blade loading around the azimuth. Assuming some initial
inflow, the blade element calculation provides the loading dis-
tribution which becomes the boundary conditions that are enforced

on the rotor disc panel model. This loading is fed into the
rotor wake sheet and is included in the solution for the strength
of singularities used in the fuselage model. With fuselage

singularities then known and the rotor loading defined it is
possible to calculate the flow field velocitiles around the rotor

wake and to relax (deform) the wake as dictated by the loca_
flow. Following the wake relaxation the rotor inflow field is
re-evaluated based on the new wake position and the blade element

calculation re-run to update the now radially and azimuthally

varying time-averaged, disc loading distribution. The whole pro-
cedure may then be repeated as often as is required to arrive at

a converged rotor loading, wake position and fuselage airloads

solution. When this is complete, the loadings represent fully
the effect of rotor on fuselage and fuselage on to+or, including
the second and higher-order effects.

The blade element model used in the present calculation is

the conventional, rigid blade, flapping analysis. Airfoil sec-

tion data is included in the standard manner. Since the pro-
cedure is modularized, it would be very easy at a later date to

replace the performance routine with a more elegant model.

2.2 Body AerodynamicR

The aerodynamics of the body and wake components are calcu-

lated using program VSAERO. Program VSAERO (Vortex Separation

AEROdynamics analysis) is a refined surface singularity analysis
which removes the limitations of the earlier generations of codes

(Reference 22 is typical) and provides a much more rigorous

aerodynamic model without sacrificing the simple, flat panel
model of the aircraft shape. The program development was funded

by NASA and the U.S. Navy and has been documented most fully in

Reference 23. Using a combination of source and doublet singu-
larities and modifylng the way in which the boundary conditions

are applied, the program solves for the local doublet strength.
This is then differentiated to obtain the local velocities. The

method of solution has been extended to handle strong external

vortex/surface interactions and is no longer constrained as were

the earlier codes to align external flow vortices along panel
edges. This permits relaxation of the wake (iteration to a

force-free location) without the repanelling between iterations

that was implicit in the earlier programs.

!
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The program used in the present study was the potential flow

model for general configurations with multiple components. The
program capacity is for 1,000 panels on each side of the plane of

symmetry with an additional 1,000 panels of separated wake. The

wakes may be shed by all the components along any edge (say the

wing tip edge) and any or all wake(s) may be relaxed. Engine
inlet and exhaust flow may be modelled and high energy jets

simulated. The program can also be used to survey the velocity
field off the body, and to carry out iterative calculations of
the viscous/potential flow on the oody surface. Also available

in other versions of the program dr? on- and off-body streamline
capability, coupled viscous/potential flow iterations with exten-
sive separation modelling and time-stepping and harmonic wake

analysis, respectively, for large and small amplitude unsteady
body motions.

The principal problem working against the application of the
old panel codes to the rotor and other highly interactive flows

is their inability to handle wake/surface cutting. In a conven-

tional source or vortex-lattice method, impact of a vortex

element onthe surface anywhere other than along a panel joint
will cause a divergent solution. In VSAERO, because of the

nature of the solution, it simply causes a jump in the doublet
distribution along the line of the cut. Provided that this jump
is accommodated in the surface differentiation used to determine

the velocity field, the resulting solution can be continuous
through the cut. To demonstrate the procedure on a configuration

somewhat simpler than the typical helicopter, a simple test case
was set up.

2.3 The Wake Cuttina Procedure

In order to explore whether the potential jump associated

with wake cutting would violate the basic formulation or at least
cause a numerical problem in the solution, a tes_ case was set up

with a vertical surface ahead of a wing, Figure 7. The vertical

surface is modelled with a 3 x 12 panel array on a zero thickness
lifting surface. The tips of this surface have a 5 degrees

backward rake. The vertical surface is set at 20 degrees to the

x-axis; i.e., t_ carry a side force directed to the plane of
symmetry. The horizontal wing has a rectangular planform with an

aspect ratio 4 and a NACA 0012 section: it is modelled with a 24

x 20 array of panels on the main surface and a 3 x 12 array on
the half-round tip. The spanwise panelling is arranged with

concentrations near the tip and just outboard of the spanwise

station of the vertical surface trailing edge (i.e., where the
maximum vortex wake interaction is expected to occur). The onset
flow was set _t I0 degrees.

Figure 8 shows two views of the calculated wake geometry

after three wake shape iterations. The side view, Figure 8(a),

demonstrates a very nice behavior of the basic vortex roll-up
calculation on the vertical wake. The top view of the wake

13
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geometry (Figure 8(b)) shows reasonably good behavior except that

beyond the wing trailing edge the effect of widening the spacing
of the grid planes used in the wake calculation, for reasons of
economy, can be seen.

A spandise cut through the doublet distribution, Figure 9,
shows the expected jump in doublet value (i.e., jump in surface
perturbation potential) due to the vertical wake intersection.

The jump occurs at slightly different spanwise locations on the
upper and lower surfaces due to the local tilt of the wake panels

at this station (x/c - .25). It is easily verified that the

spanwise doublet 9_adient (i.e., Vy), plotted in Figure 10, is
essentially continuous as we pass through the wake--only the

doublet value is discontinuous. During the analysis phase of the
calculation, where the doublet distribution is differentiated to

obtain the velocities, the program senses the wake cut induced

jump and selects the appropriate differencing scheme. Similar

good behavior was also noted in the other velocity components and
in the surface pressure distributions. The vortex pazr from the

vertical surface clearly dominates the spanwise flow on the wing.

The otherwise inboard flow (negative Vy) on the wing upper sur-
face has been totally reversed by the vortices except in the very

tip region where there is clearly still some flow moving around
_rom the lower to the upper side.

._.4 Rotor Blade Aerodynamics

Rotor blade aerodynamics _s calculated using a simple blade
element theory model. Inflow velocity, after the first iteration
during which the inflow is assumed constant at the momentum

value, is calculated in the body/wake portions of the program and
passed over to the rotor internally. This includes all three
components of velocity and contains, in addition to the contri-

bution of the fuselage, the wake induced terms. These velocity

components coming over from program VSAERO are in the body co-
ordlnate system. As a result they must be transformed into the

rotor control axis system to be considered as elements of the
inflow velocity.

In the conventional rotor calculation the velocity com-

ponents at the rotor disc control plane are commonly represented
as below:

Voo

__/U (Inflow)

_Control Plane

: Axis

' Contiol Axis Angle
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In the present case the situation has been generalized by

introducing three components of induced velocity which contain

the influence of the fuselage and the rotor self induced (through
the wake) effects. The more general case appears as below:

_Iv +v_ Vc = Climb Velocity

V + Vx

_IW_I Plane

/ Control Axis Angle

and includes an out of plane lateral component, Vy.

Following convention these are resolved into and

perpendicular to the control axis system and become

(V + vx) cos_ -

(Vu + Vz ) cos_ +

(V¢ + Vz ) sin

(V_ + Vx) sin

vy

Still following normal rotor conventions these are then

resolved into the blade axis system where they take on the form:

Perpendicular to the Blade

° [ 1Up =- (r - el_ + (V + V )sin_ + (Vc + V z) cosa cosg

-Ill(V= + Vx)COSe- (Vc + Vz)sins#_ cos_ + VY sin_] sins

= _r + ,!(V® + Vx>COSe - (Vc + Vz)sine ! sin_ - Vy cos$UI )

[_I(V_ + Vx) COS_ - (Vc + Vz)sin_ I cos_ + Vy sin_J] cos_

+ [cv® + v >si_ + Ivc + v }cos_] sinB
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The induced velocity components are updated as the rotor

body iteration proceeds. As an example, on the first pass

through the rotor analysis, the vertical induced velocity, V_
will contain only the prescribed momentum inflow velocity. On

the second pass, it will contain the first-order body induced

upwash (the isolated body effect) and the induced velocity from
the skewed vortex sheath model of the rotor wake. The strength

of the rotor wake is set by the rotor loading calculated in the

first iteration. On the third pass, the V. term contains the
body effect, this tlme Includlng second-order rotor and wake-

induced components, and the inflow from a now distorted sheath
wake. Subsequent iterations add higher-order corrections. Ex-
perience has shown that for low-speed flight, 0.05 advance ratio,

two wake relaxations are required (3 passes through the rotor

code). At high speed, advance ratios of greater than 0.15, two
have been found to be adequate.

Convergence was based on several parameters, chief among
them being the behavior of the _otor wake. This was followed

from one iteration to the next and was observed to stabilize very

quickly as the interactions were included in the wake relaxation.
Other criteria included rotor total and blade section parameters,

and perhaps most sensitive, the local velocity at rotor panel
centers passed back to the blade element calculation by the
fuselage/rotor wake segments of the program.

No small angle assumptions have been made to permit
extension of the analysis to propeller, tilt rotor cases at some

future date.

With the blade section onset flow determined, the local

angle of attack is known and the section and blade loads can be
calculated in the conventional manner with radial and then azi-

muthal integrations. Only rigid blade flapping is permitted. No
aeroelastic effects are considered. The rotor module has de-

liberately been isolated from the rest of the calculation so
that, if required at a later time, a more involved rotor algo-

rithm may be substituted. The present module may be operated at

prescribed collective and cyclic pitch settings or may be allowed
to iterate to requested gross weight and rolling and pitching

moment targets.
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2.5 Rotor Disc Panel Model

Coupling of the body and rotor aerodynamic phases of the

calculation are carried out through the panel model of the rotor

disc, Figure Ii. This happens in two ways. _he first is the

straightforward model of the incremental velocity added to the

flow by an actuator disc (or more correctly, mosaic) where the

velocity on individual "tile" or panel is the impulse produced by

the time averaged loading on a disc segment bounded by pre-
identified radial and azimuthal boundaries. The second is the

way in which the radial distribution of loading is integrated to

provide a local doublet strength and ultimately provide the

strength of the vorticity passed over into the wake attached

along the disc inner and outer edges. This is illustrated in the

schematic in Figure 12.

One of the features available in program VSAERO, 23 is the

"type 4" patch. This type of patch allows actuator disc panel

modelsof propellers and rotors to be constructed and requires

that both the source and doublet parts of the singularity be

specified.

For a type 4 patch, the doublet strength is given by:

r

bCa =_ P

2 (V'/V)
O

dr

bCp is the panel differential pressure coefficient (upper-
lower), V' is the resultant local velocity at the panel and V = is

the onset flow velocity. The incremental loading for the panel

model may be easily determined from the blade element calcula-
tion.

bE
bC =

P _oV®2_A

where bL is the time averaged segment load and _A th_ seglaent

area and aL is given simply for a particular azimuth and radial

location by

l
p4

"'i

bE- n_LL __b
_r " NC

In this expression, bL/_r is the blade lift per unit span, _R is

the segment spanwise extent, b is the number of blades and NC is
the number of azimuth increments into which the disc circum-

ference is broken.
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Definition of the source term in the singularity expression

requires the normal velocity on the disc panels and this also can
be determined from the blade element calculation output and

simple momentum theory. The doublet strength and the normal

velocity for each panel are passed over from the rotor code to
the body solution £nternally and require no user input.

The rotor wake is automatically fed by the doublet strength
determined for those panel fringing the disc model using the

basic VSAERO capability, with the wake sheath being fed by the

tip doublet strength, the sum of the spanwise integration of
loading, the inflow calculation has the same order of fidelity as
a filament model of the wake in which only the tip vortex is
modelled.
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3.0 THE CO:_PU_ _ROGRAM

The Body-Rotor analysis program (BodRot) is an extension of

the basic program VSAERO.23 The rotor program is a self con-

tained subroutine called by the main program whenever a type 4

patch, a rotor or propeller disc, is loaded. The code is avail-
able as an update deck to the basic program. The analysis has

been loaded and executed on Control Data Cyber 176 and 7600

machines and has recently been demonstrated on CRAY. The only
additional data required beyond the general configuration des-

cription is the rotor details and the blade section airfoil data.

Part 2 of this technical report contains the program user's

guide, sample input and output listing and a listinq of the rotor
subroutine source code.
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4.0 DISCUSSION OF RESULTS

4.1 Application of the Analysis to a Simple Body/Rotor

To evaluate the combined body/rotor analysis program, a

simple test case was set up with the fuselage sized to exaggerate

the body/rotor interference effects. Figure 13(a) and (b) shows,
respectively, an oblique view and a side view of this test con-
figuration. The panelling on both body and rotor is deliberately

less dense than in a practical case in an attempt to preserve
some clarity in the illustration. The rotor panelling is set to
coincide with the azimuthal stations at which the blade element

calculation is performed, while the panel centroids are coinci-
dent with the blade element control point locations. Also shown

in this figure is the initially prescribed wake location with

only the streamwise legs of the wake panels shown for clarity.

Note that the wake has been "draped" over the fuselage. At this
stage in the development of the analysis, the calculation is

limited to cases where the wake passes either completely above

the body or totally immerses the body.

In Figure 14(a) and (b) the rotor wake is shown from the

same view points as above after two iteration cycles. For this
case, which represents a rotor at a low advance ratio and a

thrust coefficient solidity ratio (CT/_) of roughly 0.08, the
very pronounced wake roll-up that wo61d be expected is clearl
seen. The rotor wake behaving in its time-averaged form muc_

like the wake of a low aspect ratio wing begins to roll up at the

outer edges as it leaves the trailing edge of the disc. The
roll-up process begins well ahead of the rotor shaft axis as can

be seen by the pronounced divergence of the streamwise wake
lines. In the side view, Figure 14(b), the presence of the body
is evident in the path followed by the lines from the disc

leading edge, much higher than would be expected from the rotor

in isolation. Body influence is most marked, however, in the

plan view, Figure 14(c), where the wake roll-up is taking place

at a spanwise (lateral) location further outboard than in the
isolated rotor case. The plan view for the equivalent isolated
rotor case is shown in Figure 15. With the capability to calcu-

late the wake trajectories and coupled behavior demonstrated with

the simple model, the study was broadened to examine more rep-
resentative shapes.

4.2 Basic Body/Rotor Results for a Representative

Confiuuration

The model chosen for the study was that tested by Freeman
and Mineck4 scaled to a rotor radius of 20 feet. This size was

chosen to give a full scale machine typical of helicopters in the
small to medium size range. A target vehicle weight of 7,000 lb.

gave a rotor thrust coefficient of 0.00554. Calculations were
made at three advance ratios: these were 0.05, 0.15 and 0.3.
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The two low values were chosen to provide an overlap with the

Freeman data, the high value to give a more realistic case for
studying body rotor interference close to the cruise condition.

The body is shown in outline in Figure 16 comparing the original
model and calculation scales.

Figure 17 shows an oblique view of the basic panel model of

the fuselage and rotor. Correlation with measured surface pres-
sure data Is generally acceptable. Certainly on those regions

most influenced by the rotor wake, the fuselage aft of the rotor

center, agreement is good. Figure 18 shows comparisons at sta T
tion 17.6 for two advance ratios. The comparison is presented at
the same data scales as in the original report,4 at advance

ratios of 0.05 and 0.15. Correlation over the front fuselage,
Figure 19, is less good. This probably results, to a certain
extent, from the relative crudity of the panel model in this

region, and from a mismatch in the calculated and actual angles
of attack. Wind tunnel corrections had been allowed for the test

data. In the analysis, the lower surface was made deliberately

sparse to allow for increased panel density on the upper and aft
sections. Sections within the rotor influence should be less

sensitive to model rigging angle/analysis angle mismatch than

would be those sections on the nose. For comparison purposes the
isolated body results are superimposed on the open scale (u -
0.15) plots. The full correlation set for all the stations at

which data were measured in the original test are shown in Appen-
dix A of this report for the advance ratios at which analysis and
test overlapped.

An oblique view of the low advance ratio case, Figure 20,

shows the wake draped over the fuselage. This is explored fur-

ther in Figure 21 where cross sections are taken through the wake
as it develops aft and downwards. It is interesting to note the
roll-up of the edges of the rotor wake. Since the wake is made

up of rectilinear vortex elements, some crossing is to be expec-

ted in the model. Inpractice, however, the wake simply coils
around itself. In the model, the wake leaving the leading edge

of the disc moves first upwards as it is convected aft. It then

passes downward, held up above the isolated rotor position by the

flow developing around the fuselage. The wake cuts the pylon,

recombining above the tail cone in the region aft of the rotor

head. In the absence of detailed experimental data on wake/body
cutting, it is difficult to judge how valid the present model is

in this region. It does, however, appear to behave as a membrane
made of discrete, traverse vortex elements would act on an

oblique approach to a surface, first deforming as the surface is

sensed and then, at some point, dividing with the torn edges
rolling up along the surface. The theoretical wake does not, of

course, tear. Here, the streamwise elements defining the edges

of the wake panels pass, following the external flow lines, over
the body, reacting to their reflections in the surface while the
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cross elements pass through the surface connecting to the adja-

cent streamwise filament. These carry with them, into the body
solution, the jump in doublet strength which accounts for the
change in flow conditions from outside to inside the wake.

The effectiveness of the procedure for handling the wake
cutting problem is shown in Figure 22(a) where the doublet dis-

tribution along the pylon waterline cut is shown. The jump in
strength across the wake edge is clear. In Figure 22(b), the

velocity component in the streamwise direction shows no perturba-
tionc other than the changes in velocity associated with the
changes in shape.

Based simply on the relative magnitude of the rotor inflow

velocities, the effect of the rotor on the fuselage would be
expected to decrease with increasing flight speed. This shows

very clearly in Figure 23 where the vertical velocity component
along a horizontal cut close to the model maximum is plotted for
values of advance ratio of 0.05 and 0.15. In both cases the

fuselage was set at the same angle of attack and the rotor was

trimmed for level flight at 7,000 lb. GW and 12 ft.2 of drag with
nominally zero pitching and rolling moment. At u - 0.15, the

rotor-induced vertical velocity is very small and differences

between right and left (advancing and retreating) sides are
slight. At u - 0.05, however, where the rotor downwash is a

substantial fraction of the forward flight speed, the side to
side differences are quite marked with the more highly loaded,
inboard, advancing side showing the stronger effect.

The trend of the influence of the fuselage on the rotor with

speed is, of course, reversed as it is stronger _t higher speeds.
This is best illustrated by comparing the blade angle of attack
distribution at an inboard and outboard station (0.4 and 0.9

R/RTI P) for advance ratios of 0.05, 0.015 and 0.30 shown in

Figures 24 and 25. As expected, the strong upwash over the nose

and downwash over the aft fuselage are reflected %n regions of
increased and decreased angle of attack. At u - 0.05, the fuse-

lage effect on the rotor is almost negligible; at _- 0.30, it
dominates the picture. These dramatic changes in angle of attack

result from the fuselage-induced flow field. Earlier analyses,

the work of Landgrebe et al.2 and Polzll,12 are typical, failing
to include coupling between fuselage and rotor flow fields,

produce an inflow distribution that is symmetrical. The present

approaches with full coupling shows a more nonuniform upwash,
Figure 26, and one which certainly, in reflecting the lateral
differences in rotor loading, is not symmetrical about the fuse-
lage centerline.
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4.3 The Effect of Confiquration Elements on the Rotor/

_uselage Flow Field

Adding representative horizontal and vertical stabiliser

surfaces to the basic configuration has only a weak influence on

the rotor flow field, but serves as a good example of the ability
of the analysis to handle calculations where fuselage elements

are embedded in and, in fact, pierce wake regions. For this
configuration the tail surfaces, shown superimposed on the basic

fuselage in Figure 27, were modelled using the "type 3" patch

_4_aDility of Droqram VSAERO. 23 This permits the use of simple
1_tlng surfade sections, modelled with a doublet lattice, to

economically represent components in a situation where only

lifting (as opposed to thickness) effects are important.

Figure 28 shows the chordwise and spanwise pressure distri-

butions on the vertical stabiliser, with the lower portion im-
mersed in the main rotor wake. The success of those portions of

the program dealing with wake cutting can be measured by the

smooth vertical development of pressures.

As might be expected the presence of the tail surfaces has

only a small effect on the rotor loads, most of this coming from
the slight retrimming required to compensate fOE the disturbance

a loading on the rear of the disc caused by the small amount of

circulation about the horizontal stabiliser. Figure 29 shows the
comparison of blade angle of attack before and after adding the
tail surfaces.

The further addition of nacelle units, Figure 30, however,
has a substantial effect on the rotor flow field. Mounted on

either side of the pylon they produce changes in the upwash field
with an interesting indirect effect illustrated in Figure 31.

This shows the angle of attack variations with azimuth at radial
stations of 40% and 90% of the blade radius. Although mounted at
900 and 2700 azimuth, their direct effect is seen all around the

azimuth. However, the retreating blade change occurs in the

relatively low energy region of the disc; for advance ratios
higher than the 0.15 of the present example, it would be in the

reverse flow region, and so the lateral rotor loading is put out
of balance. The rotor must, therefore, be retrimmed and this is

the indirect effect that is causing the observed changes at the
outboard station.

Adding a mass in the center of the disc has an even more

dramatic effect. The size of the blockage was chosen to rep-
resent the volume and frontal area of a rotor head with some kind

of vibration adsorption equipment superimposed. The separated

flow behind the rotor head was modelled and the wake transport

and deformation was calculated in parallel with the deformation
of the main rotor wake. Figure 32 shows an oblique view of the

configuration and the calculated wake trajectories. The main

rotor wake is present, but has been omitted from the picture for
reasons of clarity. The calculated path aft and down matches the

39

J



1
I

OUTSIDE

INSIDE WAKE EDGE

ORIGINAL PAQE IS

oE _ QUALrn'

Figure 28. Pressure Distri-

bution on Lifting-Surface

Model of Tail Assembly--
0.15 Advance Ratio.

Is-

le-

ALPHA
(DEG}

S

-5

ROTOR AND BODY

ROTOR + BODY ,.L

R/R - O.4 /_.._.,

dLS

R/R - 0.9

! ! ! u v , v 1 l v ! ! v 1 v T

e 1ee aee 3ee 4ee

BLADE AZIMUTH (DEG)

|

Figure 29. Effect of Tail Surfaces on Calculated Blade

Angle of Attack; 0.15 Advance Ratio.

4O



ORIGINAL PAGE I$

OF.POOR QuALr_

Figure 30. Basic Body Model with Nacelles and
Tail Surfaces Added.

Figure

IS--'

tO -

ALPHA

(O=G)

(
RpTOR AND ,3CDY

ROTOR ÷ BODY + NACELLES

I
I

_R = O.q

e/R - 0,9

T I" I

/

=,

I _ '1 I i I 1 i I" 1 I I

,,ee 3ee 4et

BLADE AZIMUTH (DEG,)

31. Effect of Nacelles on Calculated Blade Angle of

Attack--0.15 Advance Ratio.

41



-'--'-_" ___ REPRESENTATIVE CFd]SSSECTION

Figure 32. Calculated Rotor Head Model Wake Development--

0.15 Advance Ratio.

E:O-I

10

0

-LO

<_._

I 1 • ! ! ] r i "

30 -20 -10

H_O_ WAKE ' " '

EN61NE WAKE

'" _ , i v i, l v u v v ! I T T V ! !

0 10 2_ 30

Figure 33. Rotor Head Wake Cross Sections--0.15 Advance Ratio.

42

I

j,



observations of many authors. It should be pointed out here that

no attempt was made to model the effects of hub rotation and,

consequently, any lateral displacement is the result of asymmetry
in the steady flow about the fuselage and through the rotor.

Figure 33, showing cross sections through the aft fuselage and
all the wake elements at the mid-span and tip of the downstream

blade shows the wake convection more clearly.

The presence of the rotor head has a very strong effect on
the blade behavior. Forced to accommodate not only the flow

distortion associated with the presence of the rotor head mass
itself, it must also pass through the "dead" region of the sepa-
rated wake. The blade _esponse to this perturbation domimates

Figure 34 where the azimuthal variation of blade angle of attack
at two stations is presented. Clearly, this will have a profound

effect on the calculated aeroelastic response of the blade and
could well be softened when elastic effects are included. The

substantial changes in cyclic pitch required to retrim the rotor

in the presence of the rotor head can be seen in the differences

in local angle of attack at the outboard station also shown in

Figure 34. It should be pointed out that this treatment of the
rotor head as a simple bluff shape with no base ventilation is

almost c_rtainly exaggerating the effect. Further work is re-
quired in this area.

Several studies, Reference 24 is typical, have shown how the

roto_ head wake and regions of upper body separated flow can be
controlled by the addition of a rotor head cap or "beanie" or by

contouring of the aft pylon to provide an eoge separation which
rolls up and convicts the separated flow out of the region of
harm. Both these devices were studied using the analysis.

Figure 35 shows the panel models of rotor head cap and the aft
pylon modification and their wakes. The success of both devices

in depressing the disturbed flow and the cente_ of the main roto_

wake is clearly seen in the wake cross sections at the trailing
edge of the rotor disc shown in Figure 36. The strong roll-up of

the wakes on the rotor cap and modified pylon shapes contrasts

sharply with that noted on the basic rotor head. Again, although
the main rotor wake was included in the calculation, it was

omitted from the drawing for reasons of clarity.

The presence of the flow control devices was also felt in

the blade aerodynamics. Figures 37(a) and (b) show the azimuthal

variation of blade angle of attack both inboard and outboard and
the softening effect of the flow control can be clearly seen in a
comparison with the untreated, basic rotor head result in Figure

34. Plots of blade angle contours over the whole disc show again
the softening effect of the flow control devices.

Again, it shoul@ be stressed that the rotor head effect in

this study has been exaggerated to illustrate the analysis. A
study of the actual flow field would require a mora detailed and

representative model especially regarding the base _low.

°
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Figure 35(b).
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4.4 The Potential to Study Full Confiourations

The section above has shown how the analysis can De used to

explore the influences of detailed configuration changes. If

program capacity were increased Zrom the current limit of i000

panels, the analysis would have the capability to explore full
vehicles, including multiple rotors. This is illustrated in

Figure 38. Here, as an illustration, the full machine is model-
led, fuselage, pylon, engine nacelles, horizontal and vertical
stabiliser, rotor head cap and, finally, main and tail rotors.

For the lifting components vortex sheath wakes, not shown in the
d_awing, are attached around the edges. The rotor head cap and

the stabilisers are modelled, in the interest of economy, using a

lifting surface rather than a full surface singularity model. If
machine capacity had been available, a full panel model, in-
cluding thickness effects, would have been used. Even with this

simple model further stripped down to fit within the 1000-panel
constraint by removing the nacelles, the effect of the tail rotor

on the vertical stabiliser in the presence of the main wake can
be demonstrated.

In Figure 39 the chordwise loading on the vertical fin in

the presence of the main rotor with and without tail rotor is

shown. The tail rotor is mounted and is operating such that the
fin is on the inflow side. The graph shows the difference in

pressure coefficient between the port and starboard surfaces of
the vertical stabiliser. No attempt has been made to trim the
lateral forces on the uail rotor/fin combination and the tail

rotor is simply operating at a set fixed collective. As a conse-
quence, the vertical stabiliser is operating in an inflow field

which tends to generate side force counter to that of the tail

rotor. This is, of course, unproductive and in practice the two
would be adjusted to complement rather than fight each other.

At the 0.15 advance ratio of the calculation, the influence

of the tail rotor on the main rotor was almost negligible (less
than 0.1% of the total). This could be caused by a direct tail

rotor on main rotor effect; by a second-order tail rotor on tail
surface and then main rotor effect; or it may be the result of

the cycle to cycle imprecision in the iterative process.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

An analysis has been developed which permits a fully coupled
solution of the rotor and airframe behavior of realistic heli-

copters. The effect of the rotor/body coupling on the rotor

inflow has been illustrated and the significance of the effect of

configuration elements, particularly the rotor head and rotor

head cap devices, demonstrated- The role of the rotor head cap
and pylon flow control devices in moving the separated wake and
the center of the main rotor wake was shown for a typical heli-

coper configuration.

Several additional steps must be taken to verify the useful-

hess of the analysis beyond the performance and handling quali-
ties applications of the present study. In order to be useful to

the dynamicist, the higher harmonics of loading associated with
discrete blade vortex encounters must be added (how this can be

achieved was discussed in the earlier report on this work by the

present authorl8), and the resulting blade loadings coupled to an

aeroelastic analysis. This would be further facilitated if the
program capacity were expanded beyond the current 1000-panel
version. If this were done, much greater detail in rotor disc

modelling would be possible than is possible with the present,
_elatively crude, 32 azimuthal steps in the rotor solution.

Despite the relative crudity of the model, the author feels

that with this analysis it is now possible to explore the highly
interactive flow field around the helicopter and that other

configurations previously analysed with relatively empirical
approaches can now be studied in detail with a representative
model. The most likely candidate in this category is the tilt-

rotor concept, where now, with the demonstrated wake cutting

capability of the present program, a full analysis of the dual

rotor, wing, fuselage flow field becomes possible.

Although the initial results of the study are encouraging,
one area of weakness has been identified. In the discussion of

the correlation it was noted, particularly at low advance ratio,
that the wake skew angle did not follow the expected values

beyond the rotor near field. This has been identified a con-

sequence of the way in which the type-4 (higher-energy) wake is
modelled in the basic VSAERO program. In this report the wakes

were modelled using a piecewise constant doublet segment between

each wake grid plane. Relative to the way in which the wake
behaves in the zeal world, the stepwise constant model de-

emphasises the far-wake effects. Modifications to the wake model

which would correct the problem have been identified and should
be incorporated if work is continued on the body/rotor program.
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APPENDIX 1: TEST DATA CORRELATION

TEST DATA DRAWN FROM REFERENCE 4

DATA IS PRESENTE_ FOR CASES WHERE CTE 0,005

ADVANCE RATIO 0,05: RUN 22/POINT 139

CT : 0,00518

ADVANCE RATIO 0.15: RUN 25/POINT lq8

CT : 0,00500

LOWER SURFACE (DOWNWARD FACING)_ ANALYSIS

UPPER SURFACE (UPWARD FACING)

• TEST DATA
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